Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs.
نویسندگان
چکیده
We investigated the effects of the initial stiffness of a three-dimensional elastomer scaffold--highly porous poly(glycerol sebacate)--on functional assembly of cardiomyocytes cultured with perfusion for 8 days. The polymer elasticity varied with the extent of polymer cross-links, resulting in three different stiffness groups, with compressive modulus of 2.35 ± 0.03 (low), 5.28 ± 0.36 (medium), and 5.99 ± 0.40 (high) kPa. Laminin coating improved the efficiency of cell seeding (from 59 ± 15 to 90 ± 21%), resulting in markedly increased final cell density, construct contractility, and matrix deposition, likely because of enhanced cell interaction and spreading on scaffold surfaces. Compact tissue was formed in the low and medium stiffness groups, but not in the high stiffness group. In particular, the low stiffness group exhibited the greatest contraction amplitude in response to electric field pacing, and had the highest compressive modulus at the end of culture. A mathematical model was developed to establish a correlation between the contractile amplitude and the cell distribution within the scaffold. Taken together, our findings suggest that the contractile function of engineered cardiac constructs positively correlates with low compressive stiffness of the scaffold.
منابع مشابه
Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts.
BACKGROUND Surgical repair of congenital and acquired cardiac defects may be enhanced by the use of autologous bioengineered muscle grafts. These tissue-engineered constructs are not optimal in their formation and function. We hypothesized that a mechanical stretch regimen applied to human heart cells that were seeded on a three-dimensional gelatin scaffold (Gelfoam) would improve tissue format...
متن کاملMyocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue.
Engineering cardiac tissue in three dimensions is limited by the ability to supply nourishment to the cells in the center of the construct. This limits the radius of an in vitro engineered cardiac construct to approximately 40 microm. This study describes a method of engineering contractile three-dimensional cardiac tissue with the incorporation of an intrinsic vascular supply. Neonatal cardiac...
متن کاملCardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization.
Cardiac tissue engineering has been motivated by the need to create functional tissue equivalents for scientific studies and cardiac tissue repair. We previously demonstrated that contractile cardiac cell-polymer constructs can be cultivated using isolated cells, 3-dimensional scaffolds, and bioreactors. In the present work, we examined the effects of (1) cell source (neonatal rat or embryonic ...
متن کاملIn vitro drug testing based on contractile activity of C2C12 cells in an epigenetic drug model
Skeletal muscle tissue engineering holds great promise for pharmacological studies. Herein, we demonstrated an in vitro drug testing system using tissue-engineered skeletal muscle constructs. In response to epigenetic drugs, myotube differentiation of C2C12 myoblast cells was promoted in two-dimensional cell cultures, but the levels of contractile force generation of tissue-engineered skeletal ...
متن کاملPGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues.
A significant challenge in cardiac tissue engineering is the development of biomimetic grafts that can potentially promote myocardial repair and regeneration. A number of approaches have used engineered scaffolds to mimic the architecture of the native myocardium tissue and precisely regulate cardiac cell functions. However, previous attempts have not been able to simultaneously recapitulate ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology progress
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2010